CHAPTER REVIEW

REVIEW KEY VOCABULARY

- quadratic function, p. 236
- standard form of a quadratic function, p. 236
- parabola, p. 236
- vertex, p. 236
- axis of symmetry, p. 236 minimum, maximum value, p. 238
- vertex form, p. 245
- intercept form, p. 246
- · monomial, binomial, trinomial, p. 252
- quadratic equation, p. 253

- standard form of a quadratic equation, p. 253
- root of an equation, p. 253
- zero of a function, p. 254
- square root, p. 266
- radical, radicand, p. 266
- rationalizing the denominator, p. 267
- conjugates, p. 267
- imaginary unit i, p. 275
- complex number, p. 276
- standard form of a complex number, p. 276

- imaginary number, p 276
- pure imaginary number, For

@HomeTutor classzone.com Multi-Language Glose Vocabulary practice

- complex conjugates, p. 272 • complex plane, p. 278
- absolute value of a complex
- completing the square, p. 224
- quadratic formula, p. 292
- discriminant, p. 294
- quadratic inequality in two variables, p. 300
- quadratic inequality in one variable, p. 302
- best-fitting quadratic model

VOCABULARY EXERCISES

- 1. WRITING Given a quadratic function in standard form, explain how to determine whether the function has a maximum value or a minimum value.
- **2.** Copy and complete: A(n) <u>?</u> is a complex number a + bi where a = 0 and $b \neq 0$.
- **3.** Copy and complete: A function of the form $y = a(x h)^2 + k$ is written in _?_.
- 4. Give an example of a quadratic equation that has a negative discriminant.

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 4.

4.1

Graph Quadratic Functions in Standard Form

EXAMPLE

Graph $y = -x^2 - 4x - 5$.

Because a < 0, the parabola opens down. Find and plot the vertex (-2, -1). Draw the axis of symmetry x = -2. Plot the *y*-intercept at (0, -5), and plot its reflection (-4, -5) in the axis of symmetry. Plot two other points: (-1, -2) and its reflection (-3, -2) in the axis of symmetry. Draw a parabola through the plotted points.

pp. 236-243

EXERCISES

EXAMPLE 3 on p. 238 for Exs. 5-7

Graph the function. Label the vertex and axis of symmetry. 5. $y = x^2 + 2x - 3$

6. $y = -3x^2 + 12x - 7$

7.
$$f(x) = -x^2 - 2x - 6$$

Chapter 4 Quadratic Functions and Factoring 18

x y Plot thre EX

Gra

8

11

14

Grat

EXA

Grap

Ident

inter

and

Find

4.2

EXAMPLES 1.

for Exs. 8-14

on pp. 245-247

EXAMPLE 3 on p. 254

for Exs. 15-21

3, and 4

@HomeTutor classzone.com Chapter Review Practice

Graph Quadratic Functions in Vertex or Intercept Form pp. 245-251

EXAMPLE

Graph y = (x - 4)(x + 2).

Identify the x-intercepts. The quadratic function is in intercept form y = a(x - p)(x - q) where a = 1, p = 4, and q = -2. Plot the x-intercepts at (4, 0) and (-2, 0).

Find the coordinates of the vertex.

$$x = \frac{p+q}{2} = \frac{4+(-2)}{2} = 1$$

$$y = (1-4)(1+2) = -9$$

Plot the vertex at (1, -9). Draw a parabola through the plotted points as shown.

EXERCISES

Graph the function. Label the vertex and axis of symmetry.

EXAMPLES 1, 3, and 4 on pp. 245–247 for Exs. 8–14

311

 8. y = (x - 1)(x + 5) 9. g(x) = (x + 3)(x - 2) 10. y = -3(x + 1)(x - 6)

 11. $y = (x - 2)^2 + 3$ 12. $f(x) = (x + 6)^2 + 8$ 13. $y = -2(x + 8)^2 - 3$

 14. BIOLOGY A flea's jump can be modeled by the function y = -0.073x(x - 33) where x is the horizontal distance (in centimeters) and y is the corresponding height (in centimeters). How far did the flea jump? What was the flea's

maximum height?

4.3 Solve $x^2 + bx + c = 0$ by Factoring

EXAMPLE

Solve $x^2 - 13x - 48 = 0$. Use factoring to solve for x. $x^2 - 13x - 48 = 0$ W (x - 16)(x + 3) = 0 Fa x - 16 = 0 or x + 3 = 0 Ze x = 16 or x = -3 Se

Write original equation. Factor. Zero product property Solve for *x*.

EXERCISES

EXAMPLE 3 on p. 254 for Exs. 15-21

15. $x^2 + 5x = 0$

Solve the equation.

18. $k^2 + 12k - 45 = 0$

21. URBAN PLANNING A city wants to double the area of a rectangular playground that is 72 feet by 48 feet by adding the same distance *x* to the length and the width. Write and solve an equation to find the value of *x*.

16. $z^2 = 63z$

19. $x^2 + 18x = -81$

The state of the state of the state

17. $s^2 - 6s - 27 = 0$

20. $n^2 + 5n = 24$

CHAPTER REVIEW

:0

EXERCISES

EXAMPLE

Write the expression as a complex number in standard form.

	Write the expression as a comp		
EXAMPLES	29. $-9i(2-i)$		
on pp. 276-270 on pp. 29-34	32. $(8-6i) + (7+4i)$		
: 101 -			

30. (5+i)(4-2i)**33.** (2-3i) - (6-5i)

31.
$$(2-5i)(2+5i)$$

34. $\frac{4i}{-3+6i}$

@HomeTutor classzone.com **Chapter Review Practice**

Complete the Square

pp. 284-291

Solve $x^2 - 8x + 13 = 0$ by completing the square.

$x^{2} - 8x + 13 = 0$ $x^{2} - 8x = -13$	Write original equation. Write left side in the form $x^2 + bx$.
$x^2 - 8x + 16 = -13 + 16$	$Add\left(\frac{-8}{2}\right)^2 = (-4)^2 = 16$ to each side.
$(x-4)^2=3$	Write left side as a binomial squared.
$x-4=\pm\sqrt{3}$	Take square roots of each side.
$x = 4 \pm \sqrt{3}$	Solve for <i>x</i> .

EXAMPLES 3 and 4 on pp. 285-286 for Exs. 35-37

4.7

4

EXERCISES

Solve the equation by completing the square.

35. $x^2 - 6x - 15 = 0$ **36.** $3x^2 - 12x + 1 = 0$ **37.** $x^2 + 3x - 1 = 0$

4.8 **Use the Quadratic Formula and the Discriminant** pp. 292-299 EXAMPLE

olve
$$3x^2 + 6x = -2$$
.
 $3x^2 + 6x = -2$
 $3x^2 + 6x + 2 = 0$
 $x = \frac{-6 \pm \sqrt{6^2 - 4(3)(2)}}{2(3)}$
 $x = \frac{-3 \pm \sqrt{3}}{3}$
Write in standard form.
Use $a = 3, b = 6$, and $c = 2$ in quadratic formula.

EXERCISES

S

EXAMPLES 1,2,3, and 5 on pp. 292-295 for Exs. 38-41

Use the quadratic formula to solve the equation.

38. $x^2 + 4x - 3 = 0$

39. $9x^2 = -6x - 1$

40. $6x^2 - 8x = -3$

41. VOLLEYBALL A person spikes a volleyball over a net when the ball is 9 feet above the ground. The volleyball has an initial vertical velocity of -40 feet per second. The volleyball is allowed to fall to the ground. How long is the ball in the air after it is spiked?

4.9

Graph and Solve Quadratic Inequalities

pp. 300-307

EXAMPLE

Solve $-2x^2 + 2x + 5 \le 0$.

The solution consists of the x-values for which the graph of $y = -2x^2 + 2x + 5$ lies on or below the x-axis. Find the graph's x-intercepts by letting y = 0 and using the quadratic formula to solve for x.

$$x = \frac{-2 \pm \sqrt{2^2 - 4(-2)(5)}}{2(-2)}$$
$$= \frac{-2 \pm \sqrt{44}}{-4} = \frac{-1 \pm \sqrt{11}}{-2}$$

Solve the inequality by graphing.

 $x \approx -1.16$ or $x \approx 2.16$

Sketch a parabola that opens down and has -1.16 and 2.16 as *x*-intercepts. The solution of the inequality is approximately $x \le -1.16$ or $x \ge 2.16$.

EXERCISES

EXAMPLE 5 on p. 302 for Exs. 42-44

42. $2x^2 - 11x + 5 < 0$

43. $-x^2 + 4x + 3 \ge 0$

44. $\frac{1}{2}x^2 + 3x - 6 > 0$

4.10 Write Quadratic Functions and Models

pp. 309-315

EXAMPLE

Write a quadratic function for the parabola shown.

Because you are given the *x*-intercepts p = -3 and q = 2, use the intercept form y = a(x - p)(x - q) = a(x + 3)(x - 2).

Use the other given point, (1, -2), to find *a*.

-2 = a(1+3)(1-2)Substitute 1 for x and -2 for y.-2 = -4aSimplify coefficient of a.

Solve for a.

A quadratic function for the parabola is $y = \frac{1}{2}(x+3)(x-2)$.

EXERCISES

 $\frac{1}{2} = a$

Write a quadratic function whose graph has the given characteristics.

45. x -intercepts: -3, 2 passes through: (3, 12)	46. passes through: $(5, 2), (0, 2), (8, -6)$	47. vertex: (2, 7)
	(3, 2), (0, 2), (8, -6)	passes through: (4, 4

48. SOCCER The parabolic path of a soccer ball that is kicked from the ground passes through the point (0, 0) and has vertex (12, 7) where the coordinates are in feet. Write a quadratic function that models the soccer ball's path.